78,576 research outputs found

    Conditions for Nondistortion Interrogation of Quantum System

    Full text link
    Under some physical considerations, we present a universal formulation to study the possibility of localizing a quantum object in a given region without disturbing its unknown internal state. When the interaction between the object and probe wave function takes place only once, we prove the necessary and sufficient condition that the object's presence can be detected in an initial state preserving way. Meanwhile, a conditioned optimal interrogation probability is obtained.Comment: 5 pages, Revtex, 1 figures, Presentation improved, corollary 1 added. To appear in Europhysics Letter

    Scalars in the hadron world: the Higgs sector of the strong interaction

    Full text link
    Scalar mesons are a key expression of the strong physics regime of QCD and the role condensates, particularly , play in breaking chiral symmetry. What new insights have been provided by recent experiments on D,DsD, D_s and J/ψJ/\psi decays to light hadrons is discussed. We need to establish whether all the claimed scalars σ\sigma, κ\kappa, f0(1370)f_0(1370), etc., really exist and with what parameters before we can meaningfully speculate further about which is transiently qˉq{\bar q}q, qqˉqq{\bar{qq}} qq, multi-meson molecule or largely glue.Comment: 10 pages, 4 figures. Invited talk at the International Conference on QCD and Hadronic Physics, Beijing, June 2005. A shortened version will appear in the Proceeding

    Effect of Dzyaloshinskii Moriya interaction on magnetic vortex

    Full text link
    The effect of the Dzyaloshinskii Moriya interaction on the vortex in magnetic microdisk was investigated by micro magnetic simulation based on the Landau Lifshitz Gilbert equation. Our results show that the DM interaction modifies the size of the vortex core, and also induces an out of plane magnetization component at the edge and inside the disk. The DM interaction can destabilizes one vortex handedness, generate a bias field to the vortex core and couple the vortex polarity and chirality. This DM-interaction-induced coupling can therefore provide a new way to control vortex polarity and chirality

    Finite-dimensional integrable systems associated with Davey-Stewartson I equation

    Full text link
    For the Davey-Stewartson I equation, which is an integrable equation in 1+2 dimensions, we have already found its Lax pair in 1+1 dimensional form by nonlinear constraints. This paper deals with the second nonlinearization of this 1+1 dimensional system to get three 1+0 dimensional Hamiltonian systems with a constraint of Neumann type. The full set of involutive conserved integrals is obtained and their functional independence is proved. Therefore, the Hamiltonian systems are completely integrable in Liouville sense. A periodic solution of the Davey-Stewartson I equation is obtained by solving these classical Hamiltonian systems as an example.Comment: 18 pages, LaTe

    Hamiltonicity of 3-arc graphs

    Get PDF
    An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y)(v,u,x,y) of vertices such that both (v,u,x)(v,u,x) and (u,x,y)(u,x,y) are paths of length two. The 3-arc graph of a graph GG is defined to have vertices the arcs of GG such that two arcs uv,xyuv, xy are adjacent if and only if (v,u,x,y)(v,u,x,y) is a 3-arc of GG. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201
    • …
    corecore